
Field theoretic approach to a source-enhanced aggregation process

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 571

(http://iopscience.iop.org/0305-4470/22/5/019)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 07:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 22 (1989) 571-583. Printed in the UK 
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Abstract. A diffusion-controlled cluster-cluster aggregation system with a source is analysed 
using the Fock space formalism and diagrammatic perturbation technique. The effective 
coagulation kernel and equation for low-dimensional cases ( d  S 2) are derived. The 
asymptotic size distribution obeying a power law is obtained for any dimension. The 
application to the aggregation process of particles undergoing Ltvy flight is discussed. 
Through the analysis in this paper, we clarify a relation between critical phenomena and 
a source-enhanced aggregation. 

1. Introduction 

Aggregation is a typical irreversible process in which basic units (monomers) stick 
together to form clusters. Recently, interest in this problem has increased, because 
this process appears in many areas of science (e.g. Family and Landau 1984). 

A source-enhanced cluster-cluster aggregation can be observed in various natural 
phenomena such as atmospheric aerosols (Klett 1975, Friedlander 1977, White 1982), 
star formation (Field and  Saslaw 1965), the formation of interstellar dust grains 
(Salpeter 1977, Hayakawa and  Hayakawa 1988), vapour-deposited thin films (Family 
and  Meakin 1988) and diffusion-controlled deposition (RBcz and  Vicsek 1983, Mat- 
sushita and  Meakin 1988). The source-enhanced aggregation process also has a relation 
to a mathematical model, the so-called unbiased voter model (Griffeath 1979). 
Recently, Takayasu and  Nishikawa ( 1986) have found a power-law size distribution 
for a source-enhanced aggregation model from their simulation (see also Takayasu 
etal 1988, Hayakawa e ta l  1987). In the mean-field approximation, i.e. using the 
Smoluchowski coagulation equation, Hayakawa (1987) obtained a solution for size 
distribution obeying a power law. We need a more basic theory going beyond the 
mean-field approximation to describe source-enhanced aggregation. 

On the other hand, Vicsek er a1 (1985) investigated a similar system in which 
particles are injected into the system at a constant rate and larger clusters are removed 
by sedimentation. They found that the number of clusters n takes the scaling form 
involving the injection rate h as n = h " F ( h b r ) ,  where F ( x )  is a scaling function. RBcz 
(1985a, b) pointed out the similarity between source-enhanced aggregation and dynami- 
cal critical phenomena. If we can construct a basic theory for an  aggregation system, 
we will be able to understand the similarity on a level going beyond phenomenological 
arguments. 
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In this paper, we study a source-enhanced aggregation process. We derive the 
effective coagulation kernel and discuss the size distribution. In the course of our 
analysis, we find the scaling law between a source strength and number density of 
clusters. 

The plan of this paper is as follows. In the next section we formulate the master 
equation in Fock space following the method of Mikhailov and Yashin (1985). Section 
3 is devoted to an  explanation of diagrammatic perturbation technique. Section 4 is 
the central part of this paper, where we derive a ‘renormalised’ coagulation equation 
and obtain a scaling solution of the size distribution. This section is derived into three 
parts. In 5 4.1 we give the analysis for the zero-density limit which describes time 
evolution of the system. In § 4.2 we analyse a finite-density system which is applicable 
to a steady state. In § 4.3 we mention the logarithmic correction when the spatial 
dimension is two. In § 5 we apply our theory to aggregation particles undergoing LCvy 
flight. In the final section we discuss the similarity between source-enhanced aggrega- 
tion and traditional critical phenomena, and  summarise our results. 

2. The Fock space formalism 

The Fock space formalism (formulated by Doi (1976), Grassberger and  Scheunert 
(1980) and  Peliti (1985)) is a powerful tool for studying various reaction-diffusion 
systems (Ohtsuki and  Keyes 1987a, b and references therein). This formalism is also 
effective in studying aggregation systems, because we believe that diffusive annihilation 
is equivalent to irreversible aggregation, in which the reaction rate is independent of 
coalescing clusters. Thus we can construct a theory based on the work by Mikhailov 
and Yashin (1985) who gave a detailed analysis for source-enhanced diffusive annihila- 
tion (see also Peliti (1986) and  Elderfield (1987); the validity of the Smoluchowski 
equation was discussed in the latter paper). In this paper, by using the Fock space 
formalism, we analyse a source-enhanced aggregation system. We exclude the reaction- 
limited aggregation (RLA) because there often occurs a sol-gel transition at a finite 
time (Ziff 1980) and we cannot assume the Markov process in RLA. 

A source-enhanced aggregation process is often expressed by the following 
equations: 

K,I h x, + Xk - x,, 0 -  x, (2.1) 
where X ,  (k  = i, j ,  i+j) denotes a k-mer which is formed from k monomers and K ,  
is the rate coefficient or  reaction kernel. The second equation in (2.1) represents the 
creation or injection of monomers with the rate h. 

The system of classical reacting clusters can be described by the Fock space 
formalism. In this formalism the time evolution of system is represented by the Liouville 
equation as 

where L is the ‘Liouvillian’ expressed by creation and annihilation operators. The 
state vector can be expressed as Ip) = Icp,)OIcpz)O.. .OIcpN) where l ~ p , ~ )  denotes the 
state vector for clusters with size s. Let us assume the medium is divided into cells 
which contain a macroscopic number of clusters. We characterise every cell by its 
centre position r,. The probability distribution function P S ( { n , (  r,,,)}, t )  gives the 
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probability of finding n, clusters with size s contained in the cell located at rm.  The 
vector icp,) is defined as 

I,c)= p y ( { n s ( r m ) } ,  t )  n ( T : ( r m ) ) '  ( r ~ ' ~ ) l o )  (2.3) 
{nk(rf l ,) l  m 

where the summation is performed over all possible cluster numbers { n , ( r m ) } ,  W l ( r , , , )  
is the creation operator of a cluster with size s which satisfies the commutation relation 

[ q r ( r n ) ,  q J ( r m ) I  = ~ n , m ~ i , j  (2.4) 
where V,(r,,) is the annihilation operator with size i and A ,  is the Kronecker delta. 
The Fourier transformations of creation and  annihilation operators are expressed as 
r , ( k )  and a , ( k ) .  For source-enhanced aggregation, the Liouvillian L has the form 

L = Lo+ L,,, ( 2 . 5 ~ )  

(2.5b) 

Here Lo and L,,, are the free and interactive Liouvillians, respectively, D, is the 
diffusion coefficient of cluster with size s, K , ( k )  is the Fourier transformation of the 
reaction kernel K , ( r )  and V is the volume of the medium. The injection rate of 
monomers h is assumed to be uniform per unit time per unit volume. 

As the Liouvillian is non-Hermitian, we introduce the covector satisfying the 
normalisation condition following Mikhailov and  Yashin (1985), namely, 10) = IQ,)@ 
. . is defined by 

where A (  k )  = 1 for k = 0 and  A( k )  = 0 for k # 0. In terms of the covector, the normalisa- 
tion relation for distribution function becomes ( @ l c p )  = 1. The observable number of 
clusters is the average of the number operator as 

as (k)l @( k ) )  = U k ) /  4 ( k ) ) .  (2.6) 

N ,  = ( $ 1  c r s ( k ) a r ( k )  cp = ($ ldo) lcp)= ( d o ) ? .  
k 1 )  (2.7) 

From (2.6) and (2 .7)  we find [a,(O), 7rs(0)] = 1 and ( ~ ~ ( 0 ) )  = 1 .  Hence ~ ~ ( 0 )  and a,(O) 
can be treated as c numbers for N >> 1 .  

3. Diagrammatic perturbation 

According to (2.2), (2 .5)  and (2 .7)  time evolution of the number density of clusters 
n, = N,/  V is described by the equation 
d 1 
- n , = - ( a , ( O ) L )  
d t  v 
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where we use (2.6) and the commutation relation [ a , ( k ) ,  .rr,(p)]=A,,A(p-k). If we 
adopt an approximation as ( a , ( k ) a , ( - k ) )  = N,N,, (3.1) reduces to the Smoluchowski 
coagulation equation. 

Introducing the interaction representation we can develop a perturbation expansion. 
In this representation we have Li,(k, t )  =exp( lo t ) a , (k )  exp(-L,t) and 

where iint(t) = exp(L,t)L,,, exp(-Lot) and i + ( t ) )  = exp(Lot)~p(t)) .  
As (3.2) can be formally solved, we can represent the correlations in (3.1) as 

((P 1 ( k ) a /  ( - k ) l  p) = ( $ 1  ‘I ( k 9  ‘1 ‘J ( - k  ‘1 U (  ‘ 9  6 
= ( i , ( k ,  t ) i , ( - k ,  t ) U ( t ,  -00))~ (3.3) 

with the evolution operator 

U (  t, -a) = T exp( 1 ‘ Lint( t ’ )  dr‘) 
- E  

(3.4) 

where T denotes the time-ordering operator. Here we assume that the correlations 
among particles are absent in the initial state 1+(-00)). By expanding V(t ,  -00) into 
the series of products of ( TC?,.T;,)~ and (a ‘ , (O, t ) ) o  = (a,(O)) with the help of Wick’s 
theorem, we can perform a perturbative calculation. Here the bare propagator is 
defined by 

(TG’,(k, l).T;/(k’, t ’ ) ) o  

= A , A ( k  - k’)GP(k - k’ ,  t - t ’ )  

= Al,A(k - k ‘ )  exp(-D,k2(t - t ’ ) ) O ( t  - t ’ )  (3.5) 
where e ( t )  is the step function. Let us note the following points in the perturbation 
procedure. (As we assume N ,  >> 1, the contribution from ( ~ ~ ( 0 ) )  = (7;,(0, t)),, = 1 is 
negligible.) From h( (n , (O) ) -  1) = 0, there is no explicit contribution from the injection 
terms. The injection term affects the result through N, = ( ~ ~ ( 0 ) ) .  We now introduce 
the real propagator of clusters as 

G,J(k, ~ ) = ( T z , ( k ,  t + T ) j j i ( k ,  t ) U ( t ,  (3.6) 
We note that the size of the cluster is not conserved, in general, during the propagation 
of clusters. Therefore the non-diagonal elements of the real popagator exist. From 
now on, we use the propagator of Laplace transformation, i.e. the free propagator is 
G!(k, z )  = ( z +  D,k2)-’ .  For simplicity, the notation for the Green function shall not 
change under the Laplace transformation. From (2.5), (3.4) and (3.6) we find that the 
propagator has the following form for N ,  >> 1: 

G , ( k  Z) = GP(k z ) A y  - C 2GP(k z ) r r / , m G m j ( k ,  2 ) .  (3.7) 
1, m 

Here the first term on the right-hand side expresses the diagonal part and the second 
term expresses the size increase due to coalescence during the propagation of the 
cluster. r l im = r , / , , , ( ; ( k  - p ) ,  k,  p ;  z )  represents the process in which two clusters 
(size i and momentum k,  and size I and momentum p )  stick together to form a cluster 
with size m. However, we must note that the renormalised kernel r,!,,, can contain 
multiple coalescence processes. Thus the renormalised reaction rate is defined by 

r , , ( Z )  VQ = ~ , / ( k ) ( a ,  ( w a ,  (-w v2. (3.8) 
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The discussion to obtain (3.7) is parallel to the discussion by Mikhailov and Yashin 
(1985) (see figure 1). On the left-hand side of (3.8) r , , ( z )  is equal to 

In the low-density case, i.e. the small injection rate case, the ladder approximation 
is effective, because the correction for such an  approximation appears to higher order 
of the number density of clusters. Therefore r,, is determined by 

limk,p+O 2 ,  r , m ( k  P ,  P - 2 k ;  z ) *  

with k, p + 0 (see figure 2 ) .  Equation (3.9) is not simple, because the Green functions 
contain effective reaction rates. 

]-p = +)-p m 
I n+s 

a d -  

I bl 

Figure 1. ( a )  Diagrammatic representation of (3.7), where thin, thick and zigzag lines 
represent the bare propagator, the real propagator and the number density n , ,  respectively. 
Each subscript denotes the size of the cluster. The first diagram on the right-hand side 
represents the diagonal element and the second diagram corresponds to the size increase 
because of coalescence where the summations are taken over I and m. ( b )  Diagrammatic 
representation of (3.9) where r,, ,,,, ~ = -r,,,,+!,> from ( 2 . 5 ~ ) .  

Figure 2. A simple example of a diagram which is not contained in (3.9). The contribution 
from this diagram can be neglected in the low-density case, because the order of this 
diagram is n i .  
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4. Effective rate and size distribution 

In this section, calculating the correction to the vertex function, we obtain an effective 
reaction rate and the size distribution functions obeying power laws. We also confirm 
the scaling law pointed out by RAC, (1985a, b).  

4.1. Zero-density limit (time evolution) 

First, we consider the time evolution of a source-enhanced aggregation system. Since 
we are interested in the behaviour at low density, we adopt the zero-density approxima- 
tion in (3.9) where the real propagator is replaced by the bare propagator. Thus, we 

ddq GP( p - q, z -fL)Gg(p'- q, C l ) .  (4.lb 

Since we are interested in the behaviour at long wavelengths of diffusion-limited 
aggregation, we use an  approximation as K i j ( k )  = K,(O) for lkl< R;' where R, is the 
reaction radius whose order is the sum of radii of the i-mer andj -mer .  In such a case 
the integral I(0,O; z)  can easily be performed: 

1 
I(0,O; z ) =  -~ I (t:. z+Dijq2 

- 7rKd(z/D,J)'d-2)'2 - 
D, sin( 7rd/2) 

where Kd = 21-d/7rd-21'(d/2) and D, = Di + 0,.  From the first equation to the second 
equation we use the property of the beta function, B(d /2 ,  1 - d / 2 )  = 7r/sin(7rd/2). 
This integral diverges at  z + 0 when the spatial dimension, d, is less than two. On the 
other hand, the integral can be neglected in the same limit for d 2 2, namely the upper 
critical dimension d, which ensures the validity of the mean-field approximation is two. 

From (4.1) and (4.2) we can obtain the effective reaction rate: 

for d < 2. Although the inverse Laplace transformation of (4.3) does not exist for any 
time, we can analyse the asymptotic behaviour of a source-enhanced aggregation 
system. Since we discard diagrams except for the ladder type in our approximation, 
the dimension analysis is exact (Amit 1978). Thus we estimate the effective rate as 

an, 1 -=- Ai,t-'12nin, - n ,  1 A,,tCF/2nj + hAS,'  
d t  2 i + J = r  j = l  

(4.4) 

where E = 2 - d and A ,  is the contribution from the inverse Laplace transformation 
and the prefactor of z ( ~ - ~ ) ' *  in (4.3). 

Next, we consider the size distribution of clusters. We assume that the asymptotic 
solution of (4.4) has the scaling form 

n, = c . ( s ) - ' f ( s l ( s ) )  (4.5) 
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where f ( x )  is a scaling function. We consider the time region which is long enough 
to ensure (4.4) and short enough for the maximum size of clusters not to reach the 
cutoff size. In this time region the mean cluster size (s) grows as time increases. We 
adopt a scaling analysis developed by van Dongen and Ernst (1988), which is used 
for a sourceless aggregation in the mean-field approximation. Let us introduce the 
mass flux A?"' from clusters of size j s to the clusters of size j > s: 

N 
A?"'( t )  j i i j (  t )  = h - C j i i j( t )  

j =  1 j = s + l  
(4.6) 

where N is the cutoff size. In P4.1 we replace the cutoff N by CO. From (4.5) and 
(4.6) we obtain 

A?'"( t )  = h + a(s)'-'(i) dy[y2f'(y) + ~yf(y)] I: (4.7) 

where f ' (x )=df /dx  and x = s / ( s ) .  From (3.1), (3.9) and (4.6) we find another 
expression for A?"): 

S S I  

A?(')= h - iri,ninj 
i = l  j = s - - l + l  

(4.8) 

where we assume the homogeneity of A,  as A(ai,  u j )  = a"A( i, j) where the exponent 
A'is determined by the diffusion coefficient (see (4.3)). For example, A ' =  d / 6  (Friedlan- 
der 1977) when the cluster is spherical. From (4.7) and (4.8) we can separate the x 
and t dependence of the coagulation equation as 

~ h - a 2 ( S ) 3 + h ' - 2 T  - € I 2  
t I,: du Jx:u do u)f(u)f(u) 

and 

- - w  ~ x S I [ ~ ~ l ( ~ ) + ~ 2 f ' ( ~ ) l d ~ = a  i,'du ~ x ~ ~ d v u A ( u , c ) f ( u ) l ( v )  (4.9b) 

where w is a separation constant. This separation supports the validity of the scaling 
ansatz (4.5). Equation ( 4 . 9 ~ )  can be easily solved. The solution is given by 

(4.10) 

for t > > [ d ( ~ ( 0 ) ) ~ - ~ ' - ' / 2 ( ~ - A ' - l ) ] ~ ' ~ .  From (4.9b) we find that f ( x )  has a solution 
obeying a power law for small x as X-'. From (4.8) and (4.10) we obtain 

(4.11) 

where we use (4.10) with ~ = ( 1 - - ~ / 2 ) / ( ~ - 1 - - h ' )  and J 1 ( 7 , x ) =  
du jx-u dv uA(u, v) (uv) - ' .  The left-hand side of (4.11) tends to zero after a finite 

time, owing to a balance between injection h and dissipative mass flux &f(''. Therefore 
the power index of (s) must be zero for large (s). As a result we obtain the exponent 

(4.12) 

SI 

T =  2(3 - E +A')/(4- E )  = 2 ( d +  1 + A ' ) / ( d  $2).  
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Since the prefactor (T in (4.5) is proportional to the separation constant w (see (4.96)), 
(T is determined by (4.10) and (4.11) as 

cT= [hC' /J , (T)]d '" ' " '  (4.13) 

with the numerical factor C' (see (4.9b) and (4.11)). The expression (4.13) gives a 
proof for the scaling relation predicted by RQcz (1985a) for 1 < d < 2. We add a 
comment here: since (4.9b) is the familiar equation in the scaling theory of 
Smoluchowski's equation, we know that the scaling function has an exponential form 
as f ( x )  - Ax-A exp(ax)  for large x where a and A are constants whose ratio can be 
represented by known quantities (van Dongen and Ernst 1988). 

From the above analysis we find that the size distribution is characterised by the 
exponent T,  which is the region of size distribution a power law increases as time 
increases. These statements supports the numerical results by Hayakawa et a1 (1987) 
and Takayasu et a1 (1988). When we set A '  = 0 and d = 1, we obtain T = j, which agrees 
with the result of a simulation by Takayasu et a1 (1988). 

4.2. Finite density (steady state) 

In § 4.1 we use an approximation in which the density of clusters is negligible. However, 
this approximation leads to some contradictions: the true steady state is not attainable, 
because the largest cluster grows due to coalescence. The total mass M involved in 
the medium diverges as M = ht in the long-time limit if we do not consider the effect 
of a sink. In order to solve these contradictions, we must consider the density of 
clusters and introduce the cutoff of cluster sizes which represents the effect of a sink. 

When spatial dimension is larger than two, we can use the Smoluchowski equation. 
In this case we can show a power-law size distribution in a steady state as follows. 
We consider a system with cutoff N, where clusters larger than N are removed due 
to sedimentation. As time increases, the system reaches a steady state because of a 
balance between a source and a sink. First, we assume that the cutoff size is infinite. 
From (4.6) we obtain 

(4.14) 

In order to balance between the source and the sink, the second term on the right-hand 
side in (4.14) must be finite. This is possible if n, has the algebraic form 

n, = B(h)s- '  (s  >> 1). (4.18) 

Substituting the ansatz (4.15) into (4.14) with M = O  we obtain 
h B (  h ) z S 3 + A - 2 T  J 2 ( 7 ) .  (4.16) 

(4.17) 

When we assume s >> 1, the right-hand side of (4.16) must be independent of s. Therefore 
we obtain 

~ = ( A + 3 ) / 2  (4.18) 

for A < 1 (non-gelling model) and 

B ( h )  = [ h / J , ( T ) ] " * .  (4.19) 
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Equations (4.18) and (4.19) give a generalisation of the result obtained by Hayakawa 
(1987). 

When d s 2, we must consider contributions from the diagram in figure 1. In this 
case the expression of the renormalised kernel is complicated, because we must use 
the real propagator which is not scalar. When the reaction kernel is independent of 
cluster size, we can use a simplified description. In such a case, aggregation can be 
regarded as diffusive annihilation X + X + X where X represents a cluster. Diffusive 
annihilation has already been analysed by Mikhailov and Yashin (1985) and Peliti 
(1986). In  this case the Green function is given by 

G(k,  z ) =  ( z+Dk2+4nT(k ,  z ) ) - '  (4.20) 

where T and  n are the effective reaction rate and the number density of clusters, 
respectively. T ( k ,  z )  is determined by an  equation similar to (4.1), where we replace 
Go by G. Thus 

(4.21) 

is obtained for d <2 .  In the case of d = 1 we obtain T =  16Dn, which recovers the 
result obtained by Mikhailov and Yashin (1985) except for a numerical factor. 

The size distribution can be obtained when the reaction kernel is r. In the following 
discussion we consider the system with a finite cutoff size N. Here we assume the 
scaling ansatz 

n, = a's--7g(s/ N ) .  (4.22) 

This ansatz is natural when we consider the previous discussions. Let us consider the 
size distribution for s - N. Substituting (4.21) with r = Adn'2-d'id and  the ansatz (4.22) 
into the first equation of (4.8), we also find that the size distribution obeys a power 
law when we observe the size distribution near the cutoff size with 

2 ( d + l )  
d + 2  

7=------- (4.23) 

where 

4.3. Logarithmic correction 

When the spatial dimension is equal to two, the size distribution function has a 
logarithmic correction. In $4.3 we analyse the simplest case, that the coagulation rate 
is independent of the size of the clusters. Following the discussion to obtain (4.21), 
we find that the reaction kernel has a logarithmic correction in a steady state as 

%-D 
l n (D/4nTR2)  

r =  (4.24) 

where R is the reaction radius. The expression (4.24) is a self-consistent equation. 
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Since the higher-order corrections are small, (4.24) can be approximated as 

I- = .rrD/ln( L/ R )  (4.25) 

where L= n-’ is the mean distance between the clusters. From the steady equation 
of motion in (3.1) the solution has a form (see Hayakawa 1987) 

n, = ( h  l n (L /R) /2x2D)”2s -3~’  

= ( h  l n N / 2 ~ ~ D ) ” ’ s - ~ ’ *  for N >> 1. (4.26) 

From these arguments the steady-state distribution has a logarithmic correction whose 
form is given by (4.26) with the cutoff size N. Before the system reaches a steady state, 
we have to replace N by (s). In such a case the size distribution has a logarithmic 
correction as n, = [ h  l n ( ~ t ) / 2 x ’ D ] ~ ’ ~ s - ~ ’ ~  where c is some constant. 

When we assume the power-law size distribution without the logarithmic correction, 
we find that the power-law exponent is smaller than the true value. Takayasu etal 
(1988) reported that the exponent of size distribution is smaller than the mean-field 
value for the two-dimensional case from their numerical calculation. Then they 
discussed the possibility that the upper critical dimension is four. However, there is 
little possibility of their assertion being true, because their analysis did not consider 
the logarithmic correction such as (4.26). 

5. Application 

In this section, we discuss an  application of the above formalism to the aggregation 
of particles undergoing LCvy flight (Takayasu e t a l  1988). LCvy flight (Hughes and 
Prager 1983) is characterised by the following transition probability of a particle: 

W (  r )  oc r-p-’ (5.1) 

where r is the hopping distance. From the definition of LCvy flight, we obtain the free 
propagator (Hughes and Prager 1983) 

Go(k, z )  = ( z +  DkP)-’ (0 < p 6 2). (5.2) 

When p is equal to two, (5.2) reduces to the ordinary diffusion propagator. 
Let us consider an  aggregation in which diffusing particles, described in (5.2), stick 

together to form clusters. In this section we assume that the coalescence probability 
is independent of the sizes of the clusters. Following the procedure in the previous 
section, we obtain the effective kernel in a steady state as 

From (5.3) and the discussion in the previous section a power-law size distribution is 
derived. In such a case, the power exponent of time ~ / 2  in ( 4 . 9 ~ )  is replaced by 
( p  - d ) / P ,  and E and z in (4.11) are replaced by p - d and z’= d / p ( ~ -  l ) ,  respectively. 
Thus we obtain the power exponent of size T = ( p  + 2 d ) / ( / 3  + d )  for d < ,B and T = 
for d > p. 

Takayasu et a1 (1988) simulated the one-dimensional aggregation of particles under- 
going LCvy flight, where they discussed a relation between the exponent of cluster size 
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1 i j 
Exponent o f  jumping probabil ity, p 

Figure 3. The relation between the exponent characterising the jumping probability p and 
the exponent of the power of the size distribution 7. The full circles and error bars are 
obtained by the simulation (Takayasu et a /  1988). The full curve is predicted by (5.4). The 
broken line is given by extrapolation using the effective dimension de, ,= 1. 

distribution and  the value of the parameter p (see figure 3). In our theory we predict 
the exponent of size distribution 

where T = represents a mean-field description because one dimension is larger than 
the upper critical dimension p. In the case of P = 1 there is a logarithmic correction 
for the size distribution function. When p is larger than 2 ,  the system cannot be 
described by the propagator ( 5 . 2 ) .  We expect that the results for the case p 2 2 reduce 
to those of p = 2, because LCvy flight is characterised by an  effective dimension deff = 1 
for p 2 2 (Takayasu et a1 1988). The theoretical values d o  not agree with the numerical 
results of Takayasu er a1 (1988). Such disagreements are probably based on the 
numerical error as mentioned in their paper. 

6. Discussion and conclusion 

As discussed by R6cz (1985a, b)  there is a similarity between source-enhanced aggrega- 
tion and traditional critical phenomena. Our analysis shows a connection between 
source-enhanced aggregation and critical phenomena for the following reasons. When 
we assume h = 0, then the number density of clusters disappears in a long-time limit. 
When we impose an external source, the number density appears, namely the number 
density can be regarded as the order parameter under the source h. 

The method used in 94.2 suggests another relation to critical phenomena. Source- 
enhanced aggregation has a mass flux into a sink. On the other hand, there is a mass 
flux into an infinite cluster in the course of gelation. It is an interesting point that a 
source-enhanced aggregation system maintains a ‘critical state’, due  to the balance 
between a source and a sink. Such a steady state seems to be one of the reasons there 
are so many fractal objects in nature. 
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It seems natural that source-enhanced aggregation has scaling properties, because 
this process is a kind of cascade process. Let us compare source-enhanced aggregation 
with three-dimensional homogeneous turbulence (Levich 1987). The turbulence occurs 
at  extremely large Reynolds number ( R e )  and has fractal structures in the inertial 
range. The system attains a steady state by a balance of the creation of vortices and 
the energy dissipation, with characteristic lengths L( -system size) and  ld ( -Re-3’4L)  
respectively. As the Reynolds number goes to infinity, i.e. Id + 0, the system exhibits 
a universal behaviour. When we see the cascade process of turbulence in k space, 
there is a source with the small k value and a sink with the large k. These situations 
correspond to the case of source-enhanced aggregation in size space. Therefore, we 
can extract universal properties when the cutoff size tends to infinity. 

Let us note that the spatial dimension expresses the effective dimension of the 
diffusion field, i.e. the aggregation under strong anisotropic diffusion can be regarded 
as the low-dimensional case. Thus it is important to analyse the coagulation of systems 
of lower (in general, fractional) dimensions. 

We now summarise our results. In this paper, we analyse source-enhanced aggrega- 
tion based on the Fock space formalism and obtain the size distribution which obeys 
a power law. We consider a logarithmic correction when the spatial dimension is 2. 
In addition, we give the answer to some of the questions posed by Takayasu et a1 (1988). 
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